Flanged Pipe

Ductile Iron Flanged Pipe and Fittings offer proven reliability and in-the-field flexibility for rigid, above-ground applications.

- Perfect for industrial/plant applications.
- Not recommended for underground installations.
- Available in sizes 3" - 64".

Product Downloads


  • Ductile Iron Flanged Pipe for Water and Other Liquids

    Flanged pipe and fittings are typical components in rigid piping systems. Such systems are ANSI /AWWA Standards particularly suited for above ground installation in the following: water filtration plants, sewage disposal plants, wastewater treatment plants, pumping stations and industrial plants, per AWWA C115/21.15.

    View PDF
  • Ductile Iron Flanged Fittings for Water and Other Liquids

    Flanged fittings are typical components in rigid piping systems. Such systems are particularly ANSI /AWWA Standards suited for above ground installation: water filtration plants, sewage disposal plants, wastewater treatment plants, pumping stations and industrial plants.

    View PDF
  • Class 250# Flanges

    View and/or download for more information on Class 250# Threaded Flanges

    View PDF
  • RING FLANGE-TYTE® Gaskets

    The RING FLANGE-TYTE® Gasket is a high performance gasket for flanged joint piping systems.

    View PDF
  • RING FLANGE-TYTE® Gaskets Submittal

    U.S. Pipe recommends the use of FULL FACE FLANGE-TYTE® Gaskets or RING FLANGE-TYTE® Gaskets with Ductile Iron flanged joint products supplied by U.S. Pipe.

    View PDF

FAQs // Flanged Pipe

Repair is achieved by first cutting out the defective or damaged lining to the metal so that the edges of the lining not removed are reasonably perpendicular to the pipe wall or slightly undercut. A stiff mortar is then prepared, containing not less than one part of cement to two parts of sand, by volume. This mortar is applied to the cutout area and troweled smooth with adjoining lining. To provide for proper curing of patches by preventing too rapid of a moisture loss from the mortar, the patched area is normally seal-coated immediately after any surface water evaporates, or alternatively the area is kept moist (e.g. with wet rags or burlap over the area or with the ends of the pipe or fitting taped over with plastic film, etc.). Of course, in potable water-related applications, no patch or curing components should be used in the repair that would negatively affect health or water quality.

Yes, Ductile Iron products can be successfully Glass lined. Glass lined pipe and fittings have been specified and utilized as a deterrent to interior build-up and clogging of problematic sludge and scum piping systems in wastewater and sewage treatment facilities for over 40 years. Not only is the excellent non-stick characteristic effective in combating the build-up of grease, sludge, and scum, but has been found to be the only deterrent to Struvite and Vivionite build-up as well.

Double thickness cement mortar lining in accordance with ANSI/AWWA C104/A21.4, Section 4.7.2., with seal coat in accordance with section 4.11. The cement in the cement mortar lining shall conform to ASTM C150, Type V. The internal joint areas coming in contact with the seawater, the "wetted areas", should be coated with Induron PE-54 epoxy or they can be wrapped with Denso tape. Denso tape can be purchased through DENSO NORTH AMERICA, INC. in Houston, TX - Phone No. 281-821-3355 or www.densona.com.

U.S. Pipe's primary method of thrust restraint are restrained joints.

A column of liquid moving through a pipeline has momentum or force that tends to separate the joints at changes in direction (bends and tees), stops (plugs, caps, or closed valves), and changes in size (reducers). Some means must be used to prevent joint separation to maintain the integrity of the pipeline. Three such means are thrust blocks, tie rods, and restrained joints.

Thrust blocks are usually poured-in-place concrete.  They must be engineered with full knowledge of the pipeline operating characteristics and of soil type and bearing strength. They must bear against virgin soil, because thrust forces in the pipeline are transmitted through the thrust block to the soil.  Depending on these conditions, thrust blocks can be quite massive. The use of thrust blocks can delay completion of the project to allow the concrete to cure adequately before applying test pressure to the pipeline. If future construction disturbs the thrust block or the surrounding soil, joint restraint and the integrity of the pipeline can be jeopardized.

Tie rods usually involve some sort of fabricated steel harness on either side of the joint held together by tie-rods. This type of joint restraint is generally labor intensive. A tie-rod type of joint restraint must be adequately protected against weakening by corrosion, or else the joint restraint and integrity of the pipeline can be jeopardized.

Restrained joints are designed to hold the joint together against a rated pressure while the pipeline transfers the thrust force to the surrounding soil envelope. In order to calculate the footage of restrained pipeline necessary for the thrust force to be fully dissipated to the soil, it is necessary to know pipe diameter, maximum anticipated internal pressure, depth of cover, soil type, and trench construction type, as well as the configuration (e.g., bend angle) requiring restraint. The calculated restrained footage must be installed on each side of the fitting. Since polyethylene encasement for external corrosion protection reduces the friction between the pipeline and the surrounding soil, the calculated restrained footage is usually multiplied by a factor of 1.5 for pipelines where polyethylene encasement is to be installed.

Mechanical joint retainer glands, both common and proprietary design, are available for use where such devices must be used (e.g., a special valve or meter). However, U.S. Pipe does not recommend their use. Restrained push-on joints manufactured by U.S. Pipe are less susceptible to external corrosion, offer appreciably more deflection, and are much less labor-intensive to install.

Ductile Iron pipe is centrifugally cast by pouring molten iron against the inside wall of an externally cooled rotating metal mold. The deLavaud casting process incorporates a metal mold which has a peen pattern on its inside diameter. This peen pattern is transferred to the pipe during the casting process. There are a number of reasons why the mold has this peen pattern. Before casting each piece of pipe, an inoculating dry spray is distributed on the inside of the mold. The peen pattern on the mold acts as an anchor pattern that holds and evenly distributes the inoculant. This inoculant allows the iron to solidify in a slower fashion that increases nodule count, helps refine the grain and nodular size, minimizes carbides, and makes the pipe more easily annealed. The inoculant also acts as a deoxygenizer which ties up the oxygen on the surface of the mold, thereby preventing the formation of pin holes. The peen pattern also helps dispense thermal shock and additionally helps the mold pick up the molten iron by increasing surface friction between the mold and the iron as the mold is rotated. The chill-free dual wet spray casting process involves first spraying a binder on the inside of the mold followed by the inoculating dry spray. Because of the binder, no peen pattern is required to hold and evenly distribute the inoculant.